Spatial approximation of stochastic convolutions
نویسندگان
چکیده
منابع مشابه
Spatial approximation of stochastic convolutions
We study linear stochastic evolution partial differential equations driven by additive noise. We present a general and flexible framework for representing the infinite dimensional Wiener process which is driving the equation. Since the eigenfunctions and eigenvalues of the covariance operator of the process are usually not available for computations, we propose an expansion in an arbitrary fram...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملWarped Convolutions: Efficient Invariance to Spatial Transformations
Convolutional Neural Networks (CNNs) are extremely efficient, since they exploit the inherent translation-invariance of natural images. However, translation is just one of a myriad of useful spatial transformations. Can the same efficiency be attained when considering other spatial invariances? Such generalized convolutions have been considered in the past, but at a high computational cost. We ...
متن کاملSpatial Graph Convolutions for Drug Discovery
Predicting the binding free energy, or affinity, of a small molecule for a protein target is frequently the first step along the arc of drug discovery. High throughput experimental and virtual screening both suffer from low accuracy, whereas more accurate approaches in both domains suffer from lack of scale due to either financial or temporal constraints. While machine learning (ML) has made im...
متن کاملA Partial-differential Approximation for Spatial Stochastic Process Algebra
We study a spatial framework for process algebra with ordinary differential equation (ODE) semantics. We consider an explicit mobility model over a 2D lattice where processes may walk to neighbouring regions independently, and interact with each other when they are in same region. The ODE system size will grow linearly with the number of regions, hindering the analysis in practice. Assuming an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2011.02.010